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Abstract — Experts and practitioners have worked long and hard towards achieving functionally capable robots. While numerous 

areas of progress have been achieved, ethical control of unmanned systems meeting legal requirements has been elusive and problematic.  

Common conclusions that treat ethical robots as an always-amoral philosophical conundrum requiring undemonstrated morality-based 

artificial intelligence (AI) are simply not sensible or repeatable. Patterning after successful practice by human teams shows that precise 

mission definition and task execution using well-defined, syntactically valid vocabularies is a necessary first step.  Addition of operational 

constraints enables humans to place limits on robot activities, even when operating at a distance under gapped communications.  

Semantic validation can then be provided by a Mission Execution Ontology (MEO) to confirm that no logical or legal contradictions are 

present in mission orders.  Thorough simulation, testing and certification of qualified robot responses are necessary to build human 

authority and trust when directing ethical robot operations at a distance.  Together these capabilities can provide safeguards for 

autonomous robots possessing the potential for lethal force. This approach appears to have broad usefulness for both civil and military 

application of unmanned systems at sea. 

 
Index Terms — autonomous vehicles, robot ethics, Mission Execution Automata (MEA), Mission Execution Ontology (MEO) 

 

I. NATURE OF ETHICAL MISSIONS 

Experts and practitioners have worked long and hard towards achieving functionally capable robots. While numerous areas of 

progress have been achieved, progress in ethical control of unmanned systems has been elusive and problematic.  Common 

conclusions that treat ethical robots as an always-amoral philosophical conundrum or requiring undemonstrated morality-based 

artificial intelligence (AI) are simply not sensible or repeatable. For better or worse, actors around the world are rapidly designing 

and deploying mobile unmanned systems to augment human capabilities.  Thus theory must rise to meet practice. 
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This work adapts policies and procedures for ethical responsibility and authority that have been proven to work in collaborative 

military operations, even across varying cultures and platforms. Patterning after successful practice by human teams shows that 

precise mission definition and task execution can provide safeguards for autonomous robots or human-robot teams possessing 

potentially lethal capabilities. Since lethality is not limited to military weapons but can also include navigational interference and 

vehicle collisions, and since many robots are capable of carrying out well-defined tasks regardless of their internal software 

architecture, this approach appears to have broad usefulness for civil application of unmanned systems as well. 

Experience and experimentation across four decades of robotic and military operations inform this work. The authors first look 

at unmanned capabilities and limitations, along with real-world exemplars of how humans delegate command responsibility and 

authority.  Robot mission tasks and goals can be clearly specified and refined with corresponding degrees of internal control 

supervision occurring, in the case of the exemplar discussed here as part of a three-layer software architecture. The Autonomous 

Vehicle Command Language (AVCL) [1] [2] [3] [4] allows expressing such mission constructs in a formal yet human-

understandable way, matching the repertoires of most human-driven and robot-supervised vehicles. Adding well-defined 

prerequisite constraints (permission, restriction, and required human intervention) can supplement mission orders in context of 

each individual task, providing an ethical basis for unmanned system tasking that matches human understanding of similar 

responsibilities. Careful structuring of Mission Execution Automata (MEA) demonstrates a theoretically sound and scalable basis 

to this approach. The functional vocabulary is intentionally restricted to the well-understood mission capabilities of humans and 

robots so that broad compatibility by many robots is possible.  Strict-subset vocabularies might alternatively implement these 

atomic concepts using slightly different syntax, but the core concepts must remain consistent. 

Modeling, simulation and visualization have enabled extensive testing of mission operations, building human confidence in 

well-defined task orders.  XML validation of AVCL tasks confirms syntactical correctness of mission orders, but more is needed. 

The authors therefore have created a Mission Execution Ontology based on principles of description logics, and implemented using 

Semantic Web languages. This ontology is used to confirm that mission definitions are also semantically complete, including 

ethical constraints whenever appropriate. Such pre-mission verification of mission completeness is analogous to chain-of-

command human review of operations orders that already occurs prior to coordinated team operations. 

A long trail has led to this point, inspired by many sources but driven by a need to implement practical constraints on unmanned 

systems lethality.  A feasible path forward now exists [5]. Semantic coherence of mission orders for humans and robots working 

together can be achieved, if tasks include ethical constraints that define acceptable operational prerequisites for remote action.  

Current project conclusions show that much work remains for ethical control of robots, but progress is indeed possible and quite 

encouraging. The authors believe that ethical human supervision of semiautonomous unmanned systems is feasible today and 

widely repeatable in a practical manner. 
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II. CONSIDERING CRITICAL CHALLENGES 

The idea of intelligent robots emerged from and developed in the minds of artists and dreamers long before the prevailing 

technology was capable of supporting its underlying premises.  First imagined using the term “robot” in the Czech play “Rossum’s 

Universal Robots” [6], these intelligent humanoid machines were relegated primarily to the realm of science fiction in the first half 

of the twentieth century.  Even so, the ethical ramifications of mobile (and potentially lethal) machines capable of human-like 

intelligence and actions were readily apparent, and seemingly reasonable ethical frameworks, most notably Azimov’s Three Laws 

of Robotics [7], were devised to govern intelligent robot operation.  As science fiction aficionados are well aware, then and now, 

these frameworks were rife with loopholes and unanticipated subtleties that inevitably led to their downfall. 

The advent of digital computing, the emergence of artificial intelligence as an academic discipline, and the simultaneous 

incorporation of both into a variety of robotic devices have brought these ethical concerns to the forefront of academic and practical 

debate.  Moreover, the ready availability of this technology to governments, corporations, research entities, and individuals has 

made this issue one of broad societal importance.  From robotic vacuum cleaners to armed military drones, intelligent robotic 

technology has insinuated itself into aspects of our lives that were not previously imagined.  One implication of this ubiquity is 

that questions of legal and moral responsibility will not be answered by a set of fixed “laws” and cannot be regulated into 

irrelevance through government action, just as is the case of endeavors involving humans. 

Nevertheless, a number of important observations can be made: 

• Predictability. Robots essentially perform exactly as programmed to perform in a given situation.  Predictability is 

independent of the intent of the programmer, the understanding of the operator, and any anthropomorphic bias of observers.  

Thus a trustworthy robot must be sufficiently competent to perform assigned tasks. 

• Authority. Apparent intelligence notwithstanding, a robot is an inanimate object.  Thus, moral responsibility for the 

consequences of a robot’s actions cannot be assigned to the robot.  Decision-making authority must be performed by 

qualified, well-informed humans. 

• Responsibility. Direct responsibility for the outcomes of robot activity must accompany authority, and must be assignable to 

a specific human entity.  For robot ethics to bear any tangible meaning, ultimate moral and legal accountability must reside 

with the human programmers, manufacturers, operators and leadership.  Deliberate care must be taken when giving orders to 

robots, just as is already given for orders to humans. 

• Liability. The assignment of liability (whether legal or moral) in any circumstance is premised on the assumption that the 

involved parties are in a position to reasonably foresee the outcomes for which they are being held responsible.  Liability 

accompanies authority and responsibility. 

These observations are fairly widely accepted, but nevertheless can lead ethicists to different conclusions.  In debating military 
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use of autonomous systems, for instance, Rob Sparrow of the International Committee for Robot Arms Control uses Jus en Bello 

requirements to argue that the military use of lethal robots is inherently unethical because robots cannot be held accountable for 

their actions [8].  Ronald Arkin, on the other hand, accepts the premises of Sparrow’s argument but comes to the opposite 

conclusion—that if an autonomous system is capable of making a lethal decision more reliably than a human, then it is inherently 

unethical to not use that system [9]. 

Notwithstanding disagreements over military use of autonomous robots, these observations can form a common basis that 

provides a framework for ethical operation of intelligent robots afloat.  This approach is feasible with current technologies and 

without a requirement for black-box artificial intelligence “ethical controllers” that do not integrate well with specialized software 

schemes and inevitably lead to second-guessing, obfuscation, and uncertainty.  Further, this paradigm is potentially applicable not 

only to military operations (lethal or otherwise) but also to other employment of robotic systems where questions of ethical 

operation and responsibility arise [10] [11].   

Human-directed unmanned systems must follow the well-established legal principle of vicarious liability [12] in both military 

and civilian applications, where operators can be held morally and legally responsible for all outcomes from a robot’s activities if 

they are in a position to foresee those outcomes.  That is, operators can be held responsible for undesirable outcomes that they are 

in a position to prevent.  Such outcomes are highly significant, from both moral and legal perspectives, if property or lives are lost 

[13] [14] [15] [16] [17]. 

  

III. MISSION DEFINITION AS GOALS OR TASKS WITH RUN-TIME CONSTRAINTS 

A. Goal Definition and Task Decomposition  

Research by the authors and our colleagues at the Naval Postgraduate School (NPS) relating to unmanned maritime vehicle 

mission definition and control has extended over a period of more than two decades, and has included successful open-ocean 

testing of two autonomous vehicles [1] [2] [18] [19]. Based on these efforts and prior operational experiences with vehicles afloat, 

the authors recognized the need to view maritime robot software development from both a top-down and a bottom-up perspective, 

and have incorporated both approaches into a tri-level software architecture called the Rational Behavior Model (RBM) [20] [21]. 

The RBM architecture involves three layers, each requiring different types of software roles corresponding to human roles.  A 

variety of other 3-level robot architectures have been proposed and implemented over the past two decades, typically robot-specific 

rather than generally repeatable, often with similar timing principles and varying jargon [22] [23] [24].  RBM is modeled on the 

command hierarchy of manned ships and aircraft, organizing robot control requirements into execution, tactical, and strategic 

levels as depicted in Figure 1. 
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Specific details regarding the design characteristics of each RBM level follow. 

• Execution-level control includes those hard-real-time uninterruptable tasks associated with control and management of 

hardware systems that directly interact with the vehicle’s physical environment.  These feedback-driven controllers 

correspond to the activities of a manned vessel’s junior crew-members and include manipulation of control surfaces and 

sensors. Typically, most execution-level software is provided by the manufacturer of a given robotic vehicle. 

• Tactical-level tasks direct execution-level functionality to realize more complex behaviors.  Task behaviors correspond to 

management by a manned vessel’s watch officers and can be as simple as directing a desired course and speed, or transiting 

to an ordered geographic location, or conducting specialized tasks such as an area search, mapping, rendezvous etc. 

• Strategic-level goals are at the highest level of control and correspond to guidance directed by a manned vessel’s 

commander.  These goals control overall mission conduct by triggering tactical-level behaviors. 

The RBM strategic level is entirely concerned with carrying out mission logic. Any form of mission definition at this level can 

be formalized as a finite state machine (FSM) in which each node of the machine’s state graph corresponds to commanding (calling) 

a tactical behavior, with subsequent logical branching depending on the value returned by the behavior. 

The RBM tactical level carries out mission tasks, typically using a vehicle controller and discrete decision process similar to the 

depiction in Figure 2  [25].  With this model, the controller periodically takes stock of the current situation, determines status of 

the current task, and proceeds to the next task when the current one is complete. Tactical-level RBM software modules are often 

referred to simply as behaviors [4] [5] and are executed primarily for their “side effects” that accomplish activity by invoking 

execution-level atomic behaviors. That is, behaviors cause the vehicle to interact with its environment, internal or external, to 

Figure 1. Rational Behavior Model (RBM) software architecture is based on hierarchical control paradigm of naval vessels [21]. 
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accomplish a specific mission goal or sub-goal.  

Tactical behaviors return result values from a carefully defined finite set. Original work demonstrated broad tasking flexibility 

using either Boolean success or failure.  Superior mission flow logic is possible using ternary values, i.e. success, failure, or 

exception. Example exceptions are expressed simply as constraints, for example “task incomplete due to phase time-out” or “task 

cancelled due to (potentially) violating an ethical constraint” [5].   

Execution-level processes provide closed-loop and open-control of vehicle effectors and actuators (such as propellers, rudders, 

actuators etc.  Execution-level commands often match common human commands such as “Come Left to Course North,” 

“All Stop,” or “All Engines Ahead Full.” In practice, this type of decision process is commonly referred to as a Sense-Decide-Act 

(SDA) loop when referring to overall control loops for computational autonomous agent activities, or sometimes a Sense-Interpret-

Decide-Act (SIDA) loop when emphasizing machine evaluation of sensor inputs [26].  Comparable patterns for effective human 

behavior are characterized as Observe-Orient-Decide-Act (OODA) loops [27]. 

The motivation for adopting RBM in human/robot mission software development is to avoid enigmatic and monolithic software, 

and instead use layered software based on metaphors familiar to human beings in exercising their duties at each level of a mission 

[21] [20]. Evidently, this kind of approach allows assignment of responsibility to just one human being for any tested mission 

capability, thereby eliminating “finger pointing” and confusion in case of mission failure due to either conflicted guidance or 

coding errors. Such structuring enables coherent robot/human mission control software so that necessary levels of human 

Begin Mission 
 

End Mission 
 

Choose First 
Mission Task 

Execute Mission 
Task 

Choose Next 
Mission Task 

Tasks 
Remaining? 

No 

Yes 

Figure 2. Strategic-level task sequencing algorithm for mission conduct 
as a series of discrete mission tasks and associated decisions. [25] 



Original version submitted to IEEE Journal of Ocean Engineering (JOE) 29 JAN 2017, resubmitted 6 DEC 2017 
 

7 

accountability can be assured.  Figure 3 and Figure 4 show a plain-language mission description with matching mission-flow logic, 

suitable for human supervisory approval and autonomous system tasking. 

B. Pre-Mission Testing and Flow Graphs  
In order for every possible path through a strategic level graph to be exhaustively traced by the responsible mission specialist to 

ensure its correctness, mission-flow tasking must be acyclic and free of sequencing loops. Such a graph can be said to be fully 

testable in the sense that a knowledgeable human being can certify that every possible sequence of values returned from successive 

phase execution results in the desired outcome. That is, if loop free, the mission graph can be manually fully validated and can 

serve as the formal basis for specifying mission control code. 

Multiphase missions planned and executed by human beings typically begin with a clearly stated high-level objective. Then, 

utilizing trusted behaviors executable by subordinate units (or by corresponding software modules), individual mission phases are 

defined and then connected to form (implicitly or explicitly) a directed graph, such as Figure 4, often called a process flow graph. 

Goal 1: Proceed to Area A and search the area.  Next, if the search is successful, execute Goal 2.  If the search is unsuccessful, execute Goal 3. 

Goal 2: Obtain an environment sample from Area A.  Next, if the sample is obtained, execute Goal 3.  If the sample cannot be obtained, 
execute Goal 5. 

Goal 3: Proceed to Area B and search the area.  Next, upon either search success or failure, execute Goal 4. 

Goal 4: Proceed to Area C and rendezvous with vehicle 2.  Next, upon rendezvous success or failure, execute Goal 5. 

Goal 5: Proceed to recovery position (mission complete).  Next, upon successful arrival, mission complete.  If unable to return to base, abort 
the mission. 

Figure 4. Binary strategic-level mission flow graph depicting transition 
logic of exemplar search and sample mission, suitable for human approval 
of comprehensive mission orders to unmanned systems [33]. Mission 
corresponds to human-directed goals in Figure 3. 

Figure 3. Plain-language strategic-level search and sample mission, providing well-structured success-failure branching for human approval [32].  
This mission is also displayed graphically in Figure 4. 
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If there are no branches in this graph, it is sometimes called a script. In a well-controlled and thoroughly understood environment, 

a script is often sufficient for human tasking. However, for robot execution, or for humans in an uncertain or hostile environment, 

phase failure must be explicitly accounted for. This is accomplished by branching based on a predefined finite set of possible 

phase-execution outcomes. Figure 4 illustrates specification of a maritime mission in which phase outcomes are binary choices. 

That is, as can be seen, each phase ends with either success or failure. 

 It is commonplace in the civilian world to specify complex multiphase tasks by means of binary process flow graphs. It is our 

belief that such graphs are understood well enough by the population as a whole that they can be used in trials and other legal 

proceedings to establish ownership of processes and procedures as well as liability in cases of product failure. They are therefore 

highly suitable for human use in specifying mission orders at a strategic level. Moreover any acyclic flow graph can be exhaustively 

tested and documented as a quantitative proof that the specified graph correctly implements the intended mission [5].  

C. Mission Execution Automata (MEA):  Reinterpreting Mission Flow Graphs 
 Since the strategic level of RBM is based on logic, at first it appeared that predicate calculus might be needed in its 

implementation, and that strategic level mission execution is most properly viewed as theorem proving. Therefore the Prolog 

(programming in logic) language [28] was chosen for implementing the strategic level of initial sea trials with the Phoenix AUV 

[4]. In these experiments, mission phases and branching, defined in Prolog, were activated by querying a top-level mission 

predicate. While testing was successful, and the vehicle returned safely, there was no means of verifying mission correctness since 

predicate calculus is generally not provable. That is, a set of facts and rules defining a formal system cannot, in general, be shown 

to be complete and free of contradictions [29] [30] [31] [32].  

 In an attempt to achieve mission provability in a second unmanned underwater vehicle Aries [2], rule-based mission definitions 

were adapted as active state graphs such as described above. That is, while still using Prolog for exhaustive pre-mission testing of 

mission flow graphs, in-water real-time software treated each mission phase as a software object, with associated methods to 

accomplish phase actions and transitions. A task sequencer was added to properly cycle through the phases of a mission in response 

to values returned from calls to phase methods. Such return values, in turn, come from an external agent that might be either a 

human being or a mechanical system (robot, external memory, etc.). Figure 2 defines the action of such a sequencer. 

In the programming environment for Aries, called “AUV Workbench,” [2] [33] a graphical menu system is used to define a 

mission state graph that was then incorporated with a mission sequencer to produce real-time code for the strategic level. In this 

case, since Aries was fully autonomous, queries from phases were directed entirely to the tactical level software with Aries itself 

acting as the sole external agent for the active state graph (FSM) directing the mission. 

 From an algorithmic perspective, it is noteworthy that “behavior call functions” are the same as the “external agent 

communication functions” previously defined in [32] [34]. It should also be recognized that, in case the MEA has an external one-
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dimensional memory (i.e., a bidirectional tape recorder) as its only external agent, then it is exactly a Turing Machine (TM) [30] 

[35] [32]. This is important because, as is well known in computer science, a Turing machine can return a value for any computable 

function. This means that any alternative means for implementing the strategic level of the RBM architecture cannot be more 

computationally expressive or powerful than an MEA. This is an important and previously unreported finding of the present paper. 

Table 1. Formal Mathematical Definition of Mission Execution Automaton (MEA). 
Mission Execution Automata (MEA) is formally defined as follows: 

M = ( Q, Γi, Γr, b, δ, γ, q0, F ), 
 
where: 

Q = a finite, non-empty set of states 
 

Γi = a non-empty set of input symbols corresponding to behavior-initiation function calls to the tactical level (note, once 
parameterization of function calls is taken into consideration, this set is of potentially infinite size but is practically 
constrained to a finite set by γ) 

 
Γr = a finite, non-empty set of response symbols corresponding to return values from behavior function calls 

 
b Î Γi is a blank and equates to no function call (note, since no function call is made, no response will be received, so 

execution will halt in the current state) 
 

δ: (Q \ F) × Γr → Q is the transition function mapping a current state and response to a new state 
 

γ: Q → Γi is the behavior call function that maps a state to a behavior-initiation function call 
 

q0 Î Q is the initial state 

 
F Í Q is the set of final states which equate (if the mission is constructed correctly) to mission termination 

 
Constraints can be added explicitly to the definition by adding a set of constraints C,  

a constraint-mapping function τ: Q → c Í C, and modifying both Γi and γ to account for τ. 

 

 Based on formal principles of computational theory, it is further possible to define and implement a Universal Turing Machine 

(UTM) in which the state table for a specific machine is stored on the “tape” of the UTM [30].  Likewise, it is possible to refactor 

any given MEA into a Mission Execution Engine (MEE) with a corresponding file holding mission orders. Such an MEE, along 

with mission orders for the mission of Figure 3 and Figure 4, has been mathematically defined using executable predicate calculus 

form using the Prolog programming language [28] [32]. Interpretation and execution of this mission by the MEE and MEA 

provides a mathematically rigorous basis for comparable implementations using any other computer language. 

D. Progressive Goal Refinement 
 In describing complex tasks to subordinates, humans often subdivide these tasks into a series of subordinate tasks that can be 

executed in order to accomplish the overall mission.  For instance, a complex task (or mission) during which a manned vehicle is 

expected to conduct searches and collect environmental samples before rendezvousing with another manned (or unmanned) vehicle 
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might be specified as a series of tasks as depicted in Figure 4.  Providing the vehicle’s operator knows the geographic characteristics 

of Areas A, B, and C and understands what the commander means in directing searches, environmental sampling, and rendezvous, 

the operator is able to reliably execute this mission as specified.  

Note that each of the above tasks is nontrivial.  Most tasks include transit as well as subsequent operations in different locations.  

Each task requires multiple sophisticated steps for successful completion, whether accomplished by a human or a robot. Each 

subtask typically requires even more specialized capabilities.  For example transit requires safe navigation, which requires sensing 

and classification for situational awareness plus stable control, which in turn requires operation of hardware/software capabilities, 

and so on.  Each level of abstraction requires different capabilities and sophistication, while no layer of capability can exist correctly 

without the corresponding layers of functionality that lie above and below.  Thus task decomposability is essential. 

It is evident that an MEA can actually carry out the mission it defines only when it is properly structured for a given vehicle and 

mission. One obvious requirement is that all phases in a given MEA graph must correspond to an available top-level trusted 

behavior. Consider, for example the case that a general open-ocean area search trusted behavior is available (such as a box search 

or spiral search [1]), but that Area A referred to in Figure 4 is in fact a coastal area known to be full of unmapped rocks and shoals. 

In such a case, an entirely different type of search is called for. In particular, if the vehicle always knows where it is in global 

coordinates (through GPS, inertial navigation, etc.), depth-first search, widely utilized in AI applications, can be used [36].  

Figure 5 below illustrates one implementation of depth-first search appropriate to grid-based terrain exploration. 

Figure 3. Progressive refinement, illustrating the internal Flow Graph for grid-based 
depth-first search of Area A, corresponding to necessary subgoals within Goal 1 of 
Figure 4, adapted from [35]. 
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  Superficially, Figure 5 resembles Figure 4 of this paper. However, thoughtful analysis shows several important differences. First 

of all, Figure 5 contains several loops. This means it cannot be exhaustively tested except for a given terrain example with a finite 

number of cells. Even then, possible user response sequences would likely be so long and so many in number as to make exhaustive 

testing infeasible. Further, such a test would be valid only for the given terrain. Thus, the depth-first search algorithm of Figure 5 

is not exhaustively testable and thus is not suitable for use as a top-level behavior in an overall mission graph. Moreover, 

backtracking requires either physical terrain marking (generally undesirable or infeasible in military operations) or construction of 

a map (implying an external memory). In case a map is used, this requires external storage, and the MEA then becomes a variety 

of Turing machine. However it is generally known that the correctness of a given Turing machine might not be provable. What 

can be done about this? 

 Fortunately, depth-first search as presented here mechanizes a classic trail-blazing method used by human explorers in seeking 

a goal. This method is known to always succeed when the number of cells to be searched is finite. Thus, it can be used as a trusted 

behavior, though not at a top level, because the time required to search an arbitrary terrain cannot be predicted. This shortcoming 

can be overcome by a slight modification to Figure 4 that causes it to return a value of failure (i.e. exception) if a specified time 

duration (since search commencement) is reached. Thus the inability of depth-first search to complete due to a time-out failure is 

not as serious as it might seem at first. Specifically, as can be seen from Figure 4, the overall mission plan makes provision for 

such a “giving up too soon” failure, and simply sequences the next goal which is to search Area B. 

E. Classical Decision Logic for Task Sequencing  

It is noteworthy that similar SDA or OODA control-loop models can be applied to both human and non-human operators.  Such 

correspondences imply that missions thus specified might be executable not only by humans, but by human-controlled robots, 

human-robot teams, and carefully constrained autonomous robots as well.  One important aspect of the mission above must be 

accounted for, however.  The sequential flow implicitly assumes success for each task.  Where human operators are concerned, 

this is acceptable in most circumstances.  When the ability to complete a task is in question, a human operator is able to request 

guidance from higher authority or use his best judgement to decide how to proceed.  Under the requirements underpinning the 

framework proposed in this paper, this is not necessarily an option for robot agents.  Rather, the course of action that the vehicle 

is to undertake in the event of task failure must be fully specified in the mission description.  This can be achieved through the 

introduction of a simple branching structure. 

As discussed previously, a specific autonomous agent may be trusted to execute a finite set of atomic behaviors that are used to 

define the mission.  Further, the agent must be capable of detecting when a behavior is successfully completed and when the 

behavior cannot be successfully completed.  It follows that a vehicle must be able to detect the success or failure of tasks within 

the mission definition so long as those tasks are comprised of trusted behaviors.  This capability makes it possible to more 
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rigorously define missions in a way that target autonomous vehicles can be trusted to execute without direct supervision. 

With the introduction of potential branching based on task success or failure, overall mission success is no longer reliant on a 

fixed sequence of task executions.  In fact, a particular mission can include the successful completion of some tasks, the failure 

of different tasks, and the complete omission of others.  It is appropriate in this context to refer to the individual tasks as goals to 

be achieved rather than simply as tasks.  Interestingly, the SDA/OODA decision loop of Figure 2 is still suitable for controlling 

the execution of this revised mission.  

 The binary-branching flow graph in Figure 4 is one among many potential representational forms for this and many other 

missions, and a number of  graphical, programmatic, and Extensible Markup Language (XML)-based definition forms have been 

proposed [1] [2] [3].  This flow-graph encoding is of particular interest because it provides an intuitive depiction of a potentially 

complex mission.  In fact, an operator or supervisor can utilize a mission specification of this form to mentally “rehearse” the 

mission by intentionally traversing the graph from start to finish while exhaustively testing success and failure branches at every 

step.  While not yet providing the required level of mathematical rigor, this ability to informally traverse all possible task 

sequences in this manner is an important step towards providing assurance to the responsible operator that the mission will 

progress according to human intent under all foreseeable circumstances. 

F. Adding Constraints to Mission Decision Logic  

As presented so far, this mission definition paradigm does not explicitly address the issue of ethical mission execution.  

Specifically, no mechanism has been suggested at this stage to define ethical constraints affecting the overall mission or individual 

tasks.  It might be casually argued that ethical conduct is implied by “successful” completion of goal’s requirements.  Such an 

assumption is naïve, however, and does not provide nearly enough confidence for the operator to assume liability for the mission’s 

conduct.  For instance, it is apparent that an unmanned underwater vehicle (UUV) with an appropriate search behavior can achieve 

Goals 1 and 3 of the example mission.  Unfortunately, it may or may not be able to do so while avoiding detection, remaining clear 

of other vehicles in the area, or maintaining a specific navigational accuracy.  If any of these (or other) conditional requirements 

must be met in order for the goal to be achieved in a safe and ethical manner, then an additional mechanism must be provided to 

incorporate those ethical constraints into the mission specification. 

Common approaches to ethical oversight presume the existence of some oracular agent equipped with morality and philosophical 

knowledge.  We specifically reject such notions as ill-defined, not implementable, untestable, and an abdication of necessary 

human responsibility. A more-practical approach is necessary that keeps human operators “in charge” of robot actions, even when 

operating at a distance with gapped communications [5] [16] [15]. 

Constraints on mission tasks are far more precise and effective, matching common human practices.  In a mission context, ethical 

constraints do not describe characteristics of individual goals, but rather what must be considered and enforced during goal 



Original version submitted to IEEE Journal of Ocean Engineering (JOE) 29 JAN 2017, resubmitted 6 DEC 2017 
 

13 

execution.  From the standpoint of operator accountability, the constraints must be specified in a manner that preserves the ability 

to trace high-level mission flow, and also specified in a way that can ultimately be monitorable and enforceable by the autonomous 

vehicles themselves.  A plain-language version of legitimate constraints is given in Figure 6. 

Ethical constraints vary and may be intuitively applied to either an entire mission or to relevant individual goals as appropriate.  

That is, there may be certain constraints that must be enforced from launch until recovery (e.g., all safety systems must remain 

operational), and others that only need to be enforced during the execution of specific goals (e.g., maintaining safety depth in the 

search area).   

Up to this point, the definition scheme only provides for binary branching of the mission-flow diagram:  once initiated, a goal 

either succeeds or fails, and the mission then proceeds accordingly.  Such a representation is fully representative of any decision 

tree, since tree graphs of arbitrary branching size can be traversed in a binary manner.  However, a binary approach also presumes 

that an impending ethical constraint violation equates to goal failure.  Such equivalence might be acceptable in many cases, and 

ethical violations causing goal failure certainly result in correct application of the constraints in the sense that goal execution no 

longer proceeds in the face of constraint violations.  On the other hand, it might well be desirable to treat responses to impending 

constraint violations differently than simple failure (for example, in order to meet an additional independent objective).  A more-

responsive approach is possible through the addition of a third potential goal-execution outcome for constraint violations, along 

with a corresponding branching option in the mission flow structure.  That is, execution of an individual goal becomes terminated 

upon goal success, goal failure, or impending violation of a constraint applied to that goal.  Flow of control then proceeds as 

directed to whichever subsequent goal is next designated as appropriate.  

The question before us now is to find a way of modifying the binary-branching approach of Figure 4 to include these limitations 

on vehicle behavior into the mission state graph. An excellent solution turns out to be remarkably straightforward. All that is 

required is to allow ternary branching in this graph with the third branch applying to situations when a constraint is about to be 

violated. This constraint-based tree approach is shown in Figure 7.  It is quite useful and an excellent match for supervisory planning 

Constraint 1: The vehicle must maintain navigational accuracy within acceptable limits.  Applies to entire mission. 

Constraint 2: All safety equipment must be fully functional.  Applies to entire mission. 

Constraint 3: All mission systems must be operational.  Applies to Goal 1, Goal 2, and Goal 3. 

Constraint 4: Acceptable distance from shipping lanes in the form of 1000 meter lateral standoff or minimum depth of 20 meters must be 
maintained.  Applies to Goal 1, Goal 2, Goal 3, and Goal 4. 

Constraint 5: Must be able to detect surface contacts within 5000 meters.  Applies to entire mission. 

Constraint 6: Detected surface contacts are to be avoided by a minimum of 1000 meters.  Applies to Goal 1, Goal 2, Goal 3, and Goal 4. 

Constraint 7: Minimum depth of 20 meters is to be maintained.  Applies to Goal 5. 
  

Figure 4. Constraints suitable for careful prior human supervision of robot actions in the exemplar search and sample mission. 
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needed when humans perform robot mission planning.  The general expressive power of binary-flow logic is preserved, and system 

responses must be explicitly considered for each success, failure, or constraint violation that might occur when performing each 

mission goal.  The ternary-flow structure is also similar to exception handling in modern programming languages, which can 

facilitate implementation and testing. 

G. Implications of Ethical Constraints on Mission Tasking  

Designing robot missions in the form of a flow diagram consisting of a set of discrete goals, with ethical constraints applied to 

individual goals as described here, provides an intuitive mechanism that can enhance responsible operators’ understanding of the 

missions they expect to supervise.  The nature of the mission specification is declarative.  At this level of abstraction, individual 

goals execute sequentially according to the mission graph, irrespective of elapsed time, and each goal predictably terminates in 

one of three possible states (goal success, goal failure, or constraint violation). 

Supervisory trust that a directed vehicle can execute specific goals, recognize goal failure, and identify pending constraint 

violations provides important boundaries on autonomous behavior.  Essentially this approach eliminates any need to make 

assumptions or guesses concerning intended vehicle conduct during goal execution.  Rather, the necessary requirement of well-

specified tasking is specifically placed on human operators to create well-defined and thorough missions.  Further, if the size of 

the mission-flow diagram is reasonably managed, then exhaustive testing of all possible mission execution sequences is achievable 

and tractable.  These aspects of mission design are fundamentally important, and are essentially quite similar to the essence of 

coordinated operational tasking among ships and aircraft led by responsible and cooperating humans. The next section strengthens 

the foundations for these concepts. Examining the underlying nature of the mathematical formalizations used here can provide 

  

Figure 5. Mission-flow graph for a search and sample mission with ternary branching for 
imminent ethical-constraint violations.  Constraint definitions are provided in Figure 6. 
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further operator assurance that a particular mission is appropriately defined and can proceed as expected, in an appropriate matter, 

under all circumstances. 

H. Summary of Insights, Mission Execution Automata (MEA) 

As a generalization of the Turing Machine, the MEA provides a mathematically sound approach to the definition and exhaustive 

testing of unmanned vehicle missions.  The MEA includes a mission-specific FSM and unlimited memory.  Consistent with the 

MEA generalization, the TM tape can be replaced by a physical robot or a human being to which output can be sent (commands) 

and inputs can be received (e.g. success, failure, or constraint-violation responses). Other external agents can be optionally added 

as well. 

In order to guarantee eventual termination of a mission, the structure of a Strategic Level mission must be constrained somewhat 

beyond the basic MEA definition.  Specifically, the mission FSM cannot include loops, unreachable states, or sink states (i.e., non-

terminal states from which further transitions are not possible).  Further, the Strategic Level mission must be defined with few 

enough states and transitions to allow for tractable exhaustive testing by a human operator.  However, when a Strategic Level goal 

is iteratively refined to develop a Tactical Level behavior (as with the depth-first search example) these restrictions do not apply 

since the Tactical Level can implement a time-out failure to ensure termination of individual behaviors. 

Finally, a universal MEA can be achieved by implementing sequencing and communication functions as a separate MEE and 

then developing the mission flow graph as a set of mission orders in a form understandable by both the MEE and humans who are 

mission specialists, but who may not be programmers. There are many choices for expressing such mission orders including flow 

charts, text-based programming languages, and graphical user interface techniques. 

 

IV. VALIDATION OF RBM SOFTWARE ARCHITECTURE THROUGH REAL-WORLD AND VIRTUAL EXPERIMENTATION 

A. Testing Control-Logic Responses 
Frequently applying the double-check question “how might a human accomplish this task?” is an important design principle 

for autonomous-system mission production.  Simulation testing can help demonstrate mission clarity and expected responses at 

all levels of sophistication.  Figure 8 shows an example human-directed simulation trace of RBM control logic.  Of further 

interest is that both mission tasking and supervisor inquiry/response are similar to the qualification testing required of human 

operators performing similar roles. 
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A similarly capable, independent implementation uses the Hierarchical Task Network (HTN) behavior model and Python 

programming language in the Combined Arms Analysis Tool for the 21st Century (COMBATXXI), a simulation tool developed 

and used by the U.S. Army and U.S. Marine Corps within various analytic studies [37] [38]. 

Long-duration robot missions may have lengthy mission orders.  The ability to test missions exhaustively through manual or 

automatic means, together with the ability to isolate faults, is an important design requirement.  Testability provides a significant 

boost to improving human confidence that robots can correctly perform assigned tasks in an appropriate order, and also correctly 

avoid prohibited situations forbidden by constraints.  Testability also enables eventual certification of otherwise-diverse robot 

systems as “qualified” to follow human direction competently, similar to certification requirements for any other human-directed 

vehicle. 

B. Mission Representations and Syntactic Validation 
Up to this point, all results presented have related to the Strategic Level and the Tactical Level of RBM software for a single 

example of a “search and sample” mission for a notional autonomous underwater vehicle (AUV). Furthermore, all results presented 

thus far have been obtained from high-level mission simulations typically written in the Prolog logic-programming language. 

However, beginning in 1993, in parallel with formalization and publication of details of RBM [20] [21], the authors and their 

collaborators demonstrated the value and practicality of this approach for undersea robots through a series of open-ocean 

experiments involving two small unmanned submarines. Alternatives have been implemented and tested using Allegro Common 

Ethical Mission Execution Trace #1: 
?- execute_mission. 
Commence: Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Commence: Rendezvous with vehicle 2 in Area C. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Commence: Return to Base. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Mission Abort! 
 
Ethical Mission Execution Trace #2: 
?- execute_mission. 
Commence: Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Take environmental sample from Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Search Area B. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Rendezvous with vehicle 2 in Area C. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Return to Base. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Mission Complete! 

Figure 6. Typical execution traces from exhaustive pre-mission Strategic Level testing of the exemplar search mission with ethical constraints 
depicted in Figure 7, tested using MEA Prolog source code (bold font indicates operator input). 
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Lisp and the CLIPS rule-based expert system [39], thus further demonstrating functional correctness whether using forward 

chaining or backwards chaining to resolve task logic.  These experiments and results obtained are summarized in the following 

subsections. 

Aries AUV missions were defined with AVCL, a schema-constrained XML data model supporting autonomous vehicle mission 

definition, execution, and management [1] [2] [3] [4].  While the mathematical concept of an MEA had not been developed at the 

time of AVCL’s development, AVCL does provide a fixed set of goal types including area search, environmental sampling, and 

rendezvous and is thus suitable for the definition of mission flow diagrams such as the one depicted in Figure 3 and Figure 4.  

Further, AVCL was intentionally designed to support implementation of the RBM Strategic and Tactical Levels and was utilized 

to define RBM-controlled Aries missions for simulation in the AUV Workbench virtual environment and for open-ocean real-

world tests. 

As an example, consider the XML snippet of Figure 9 which provides a hypothetical description of Goal 1 from Figure 3 and 

Figure 4 for execution by an unmanned underwater vehicle. This specification defines the type of search to be conducted (area 

search for multiple targets with an expected probability of detection of 0.8), the area to be searched (a 500 meter by 3000 meter 

rectangular area with a northwest corner at 36.7 north latitude and 121.9 west longitude), and stipulates that the search be conducted 

at a depth of between 25 and 50 meters.  Evidently, the search goal definition describes what is required for successful completion 

of the goal.  It does not, however, dictate precisely how the goal is to be completed since such navigation and maneuvering decisions 

remain the responsibility of the Tactical-Level implementation. 

 Simulation of a mission consisting an AVCL specification for a search goal similar to the one in Figure 9 and avoid areas 

specified as constraints in the AUV Workbench is shown in Figure 10.  During the mission, the Tactical Level plans a path and 

maneuvers to the search while remaining clear of the avoid areas and then develops and executes a suitable pattern for the required 

area search.  More complicated missions demonstrating the binary branching model were conducted in AUV Workbench 

<Goal  description="search operating area A" id="Goal1" > 
 <Search  datumType="area" requiredPD="0.8" singleTarget="false" /> 
 <OperatingArea> 
  <Rectangle> 
   <NorthwestCorner> 
    <LatLonPosition  latitude="36.69" y="-121.90" /> 
   </NorthwestCorner> 
   <Width  value="500.0" /> 
   <Height  value="3000.0" /> 
  </Rectangle> 
  <DepthBlock  minimum="25" maximum="75" /> 
 </OperatingArea> 
</Goal> 
 

Figure 7. An XML-based Autonomous Vehicle Command Language (AVCL) specification of Goal 1 
from Figure 7 for execution on the NPS Aries unmanned underwater vehicle [1]. 
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simulations and also in open-ocean experiments in Monterey Bay [1] [33]. A comprehensive comparison and consolidation of 

diverse goal types can be found in [1]. 

C. Dangers Associated with Using Rules and Fact Assertion to Implement Strategic-Level Logic 
As described above, Phoenix missions were executed as a result of an inferencing and reasoning process, using a set of rules 

and facts for mission definition. While all in-water missions succeeded, and Phoenix was never lost at sea, this approach provided 

no means of proving the correctness of Strategic Level software comparable to the exhaustive testing made possible by MEA 

formalism. The authors believe that this is a serious limitation that applies to all approaches for top-level Strategic Level mission 

definition that require specific actions to be derived from general principles rather than using a completely concrete finite-state 

machine (FSM) approach. 

Specifically, a set of rules and facts amounts to a formal mathematical system in which the rules and facts serve as axioms. 

Theoretically it is known that, in general, no such set of axioms can be proved complete. Here, completeness means that all true 

theorems can be proved by formal application of predicate calculus. Such computability properties are hard to prove. In fact, to the 

astonishment of the entire mathematical world, Gödel proved in 1931 that such a simple system as integer arithmetic cannot have 

any axiomatic basis. Perhaps equally shocking, even plane geometry had no sound axiomatic basis until around fifty years ago. 

This meant that, from a strictly formal perspective, all of Euclid’s original “proofs” were merely plausibility arguments. 

Fortunately, all of the theorems believed to be true are in fact provable using the complete and consistent set of modern algorithms 

[31]. 

The significance of the above observations relative to top level mission specification derives from the fact that, for rule-based 

 

Figure 8. AVCL mission SimpleBoxTest.xml demonstrating simulated conduct of a goal-oriented mission 
that was performed amidst constraints [19]. Simulation replay rendering produced by AUV Workbench [33]. 
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systems, mission execution can sometimes be regarded as a side effect of proving the theorem that “there exists a way to satisfy 

all specified mission goals while observing all given constraints.” If it eventually turns out that the mission axiom set contains a 

contradiction, then system execution behavior becomes unpredictable and not testable, as well as potentially hazardous and even 

self-defeating. 

The potential unpredictability of less-formal reasoning approaches and the inability to prove the correctness and completeness 

of axiomatically defined missions effectively precludes formal responsibility or liability for robot missions using these approaches. 

In fact, artificial intelligence (AI) approaches to top-level mission specification and control almost invariably make use of some 

form of reasoning and/or statistical pattern recognition. Applying such broad abstractions to the innumerable situations that can 

arise in the real world is very dangerous when applied to potentially lethal robots, and also makes the assumption of responsibility 

by human operators unrealistic. It is therefore apparent that the abstract reasoning of general AI approaches is inappropriate at the 

highest level of robot mission definition and control. 

Algorithms cannot replace human responsibility.  Even so, a fully testable technology such as that provided by the MEA 

formalism, allows for assignment of human accountability when directing outcomes and alternatives for robot missions. It is 

possible that ever-emerging AI techniques may someday provide good methods for achieving specific individual Tactical Level 

behavior modules.  Such employment of AI capabilities (even when experimental) can be considered appropriate in these cases 

since success, failure, and constraint violation remain fully accounted for by the Strategic Level MEA. 

V. ETHICAL VALIDATION OF MISSION DEFINITIONS 

A. Description Logics (DL) 

Thus far, the discussion of MEA mathematical underpinnings, capabilities, and implementations has focused on providing robot 

operators the ability to rigorously define and test Strategic Level missions to ensure high-level mission-flow understanding 

sufficient for the assignment of accountability for vehicle conduct throughout the mission.  The ability of an actual target vehicle 

to execute missions defined in this manner without further translation into a vehicle-specific form, however, has not been addressed.  

Mathematical logic provides a mechanism for bridging Strategic Level missions described here and vehicle-specific code for 

specifying and ordering Tactical Level behaviors.  If properly implemented, formal logic can mathematically enforce MEA 

semantics in the definition of missions and during execution of those missions on target vehicles. 

Description Logics (DL) are a mathematical family of logic-based knowledge representation systems that are used to describe 

concepts and roles within a knowledge-based system through a set of well-defined operations.  DL ontologies can be used to 

describe the requirements and relationships of a system in a semantically meaningful way.  That is, they define not only what the 

relationships are, but how they operate, how they are to be used, and to what specific entities they apply.  DLs provide expressive 

power almost equal to that of First Order Logic (FOL).  Further, these language constructs have been carefully defined to enable 
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(and indeed guarantee) computationally efficient reasoning that can always identify the existence of hidden relationships and errors 

in the form of rule violations or contradictions [40].  These are strong capabilities with great potential value. 

DLs provide the mathematical foundation of what has come to be known as the Semantic Web, an extension of the World Wide 

Web [41].  The growth of the Semantic Web has fostered the development of tools and standards that take advantage of DL logical 

expressiveness and mathematical rigor to provide extensive knowledge representation, discovery, and utilization capabilities.  Most 

notably, the Web Ontology Language (OWL) [42] together with the Resource Description Framework (RDF) [43] encode a 

particularly powerful DL in a plain-text, XML-based, computer-readable form [44].  Because of its formal and general DL 

implementation, OWL is potentially useful beyond the Semantic Web domain.  It is used here to define a robot mission description 

and execution ontology that applies and enforces MEA semantics. Further references of interest include [45] [46].  Overall 

correspondences between ethical characteristics implementable using Semantic Web standards is shown in Figure 11. 

 

Figure 9. Mission Execution Ontology (MEO) characteristics applied using Semantic Web standards to support ethical operations by human-robot teams. 
 
B. Mission Execution Ontology (MEO) for Robots 

The mission execution ontology serves a number of purposes.  First, it provides a formal and semantically rich description of 

the characteristics of a MEA mission description.  For instance, OWL expressions are used to declare the existence of concepts 

such as Mission, Goal, and Constraint.  OWL statements are also used to define possible relationships (roles) between 

concepts.  An entity to which the Mission concept applies, for example, can have an includes relationship with an entity to 

which the Goal concept applies.  Additional OWL statements describe rules that govern how relationships are applied.  As an 
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example, a Mission entity must have an includes relationship with at least one Goal entity and must have a startsWith 

relationship with exactly one of those entities.  A graphical depiction of the concepts and relationships defined in the Mission 

Execution Ontology (MEO) is provided in Figure 12.  As the diagram indicates, concepts and relationships are defined to accurately 

represent the semantics of the previously discussed flow diagrams to include the definition of individual mission goals and 

constraints; goal successors in the event of goal success, failure, or constraint termination; the mission’s first goal; and the 

application of constraints either to individual goals or throughout the entire mission. 

In addition to the Mission, Goal, and Constraint concepts that are abstracted directly from Strategic Level mission-flow 

diagram semantics, the mission execution ontology introduces the Vehicle concept.  This concept provides the ability to include 

specific target vehicles in the mission-planning process.  In particular, the canExecute and canIdentify relationships allow 

mission planners to explicitly assert that the intended target vehicle has a Tactical Level behavior capable of completing a particular 

goal and recognizing potential violation of a particular constraint, respectively.  Evidently, if a mission includes goals for which 

the canExecute relationship does not exist with the intended vehicle or constraints for which the canIdentify relationship 

does not exist, then that mission is not appropriate for that particular vehicle.  Given this requirement (which is enforced by rules 

within the ontology), it is impossible to define a valid mission that cannot be executed by the intended vehicle. 

Figure 10. A Mission Execution Ontology (MEO) expressing concepts and roles (i.e. relationships among concepts) representing the 
flow-diagram MEA mission descriptions. 
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A second important characteristic of a DL-defined ontology is that it not only describes the rules and relationships of a 

knowledge domain, but also applies those rules and relationships to entities within that domain.  Stated differently, the mission 

execution ontology does more than describe what the Mission, Goal, Constraint, and Vehicle concepts are and how they 

relate to one another.  It also allows the application of those concepts to real-world entities and the establishment of relationships 

among those entities.  From a practical standpoint, this means that the atomic entities to which the Goal and Constraint 

concepts are applied become actual executable specifications for a set of target vehicles. 

C. Implementing the Ontology 
OWL provides for the incorporation of atomic entities into an ontology using Uniform Resource Identifier (URI) labels that 

uniquely identify individual entities [47].  Thus, the mission execution ontology can be applied to the XML snippet above by 

defining an OWL statement declaring its existence and corresponding identifier.  OWL statements are also used to declaratively 

apply concepts to and establish relationships between atomic or composite entities within the knowledge base.  Figure 13 illustrates 

both the example constraint-based mission of Figure 7 plus the MEO relationships of Figure 12, as validated and then rendered in 

the Stanford Protégé ontology development tool [49] [48] [49]. All relationships are fully and formally represented.  The mission 

is expressed in RDF/OWL syntax and logically validatable.   Thus semantic validation of human orders is possible using Semantic 

Web systems, providing a significant capability for building human trust in safe operations by unmanned systems. 

The ability to provide a full description of all goals and constraints within the mission execution ontology using vehicle-

executable code significantly strengthens the already-powerful MEA construct.  Specifically, not only is it impossible to define a 

mission for a particular vehicle without explicit canExecute relationships between the vehicle and all mission goals and 

Figure 11. Validatable RDF/OWL diagram of goals, relationships, assertions, and ethical constraints for the canonical mission of 
Figure 7 plus the MEO relationships of Figure 12.  Rules and rendering produced using Protégé Ontology Editor [49] [48] [49]. 
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canIdentify relationships between the vehicle and all mission constraints, but it is also impossible to assert these relationships 

without an appropriate vehicle-specific encoding of all mission goals and constraints.  Once again, human intent to meet all ethical 

constraints without self-contradicting guidance is formally confirmed through semantic validation. 

Finally, automated reasoning with DL-based ontologies is an important tool for ensuring Strategic Level mission validity before 

conducting exhaustive verification validation and accreditation (VV&A) testing using virtual simulators and real-world operations.  

If, for instance, an attempt is made to finalize a mission that includes goals that are not executable by the target vehicle, an 

OWL/RDF reasoner can quickly identify this shortcoming using the MEO.  Similarly, a reasoner can detect mission flow-graph 

structural errors based on ontology rules that preclude illogical loops, unreachable goals, or untasked/orphan goals without 

specified predecessors or successors.  A reasoner can also simplify the mission definition process by detecting implicit relationships 

that are not explicitly or correctly specified.  For example, if a particular Goal entity is defined and is reachable from the mission’s 

start goal (i.e., the one with which the containing Mission has a startsWith relationship) through a sequence of goal successes 

and failures, then it must be in an includes relationship with that particular mission whether the relationship is explicitly 

declared or not. 

As described, a DL-based mission execution ontology defined in OWL ties the MEA semantics discussed in previous sections 

to actual target vehicles.  The ontology ensures not only the validity of the mission structure for arbitrary Strategic Level mission 

flow graphs, but their executability on the particular target vehicles as well.  Thus, all of the requirements originally posed for 

assignment of human responsibility— that the mission is defined in a mathematically rigorous and fully-understood manner, that 

the mission specification is equally understandable by the human operator and the target vehicle, and that the mission is comprised 

entirely of trusted vehicle behaviors—are fully specified in the human-approved mission orders and enforced by the strict semantics 

encoded in the ontology. The relations are defined in such a way that to permits simple customization for specific robot types. 

D. Formal Specification of the Ontology 

The principal concepts and relationships represented in the mission ontology are shown in Figure 12. Definitions of the full set 

of concepts and roles (also known as classes and properties) in this ontology satisfy a number of rules, as specified in Table 2, in 

order to support logical inferences relating to the validity of the mission structure.  All relationships have been implemented. 
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Table 2. Logical Expressions defining Concepts and Roles for Mission Planning Ontology (MEO) 

Rules Description Logic Equations Plain-language description 
M  = Mission Rules 
M1 Mission ⊑ ∃startsWith.Goal ⊓ =1.startsWith A Mission can only start with a Goal and must 

start with exactly one Goal 
M2 Mission ⊑ ∃includes.Goal ⊓ ≥1.includes A Mission can only include Goals and must 

include one of more Goals 
M3 Mission ⊑ ∃hasConstraint.Constraint ⊓ 

≥0.hasConstraint 
A Mission can be constrained only by 
Constraints and can have 0 or more 

M4 startsWith ⊑ includes A Mission must include the Goal that it starts 
with 

M5 Mission ⊑ ∃performableBy.Vehicle ⊓ 
≥0.performableBy 

A Mission can only be performed by a Vehicle 
and can be performable by 0 or more Vehicles 

M6 performableBy(M,V) ⊑ 
∀(hasConstraint(M,C) ∘ canIdentify(V,C)) 

A Mission cannot be performable by a Vehicle 
unless that Vehicle has the ability to identify all 
Constraints associated with that mission 

M7 performableBy(M,V)⊑ 
∀(includes(M,G) ∘ hasCapability(V,G)) 

A Mission cannot be performable by a Vehicle 
unless that Vehicle has the capability to 
accomplish all Goals included in that Mission 

V = Vehicle Rules 
V1 Vehicle ⊑ ∃hasFeature.Vehicle_Feature ⊓ 

≥0.hasFeature 
The only allowable features of a Vehicle are 
VehicleFeature.  A Vehicle can have 0 or more 
VehicleFeatures 

V2 canPerform ≡ performableBy- performableBy and canPerform are inversely 
equivalent 

V3 meetsRequirement ≡  
hasFeature ∘ canFulfill 

A Vehicle meets a GoalRequirement if and only 
if it has a VehicleFeature that can fullfill that 
GoalRequirement 

V4 hasFeature ∘ canTest ⊑ canIdentify If a Vehicle has a VehicleFeature that can test a 
Constraint, then that Vehicle can identify that 
constraint 

V5 hasCapability(V,G) ⊑ ∀(requires(G,R) ⊓ 
meetsRequirement(V,R)) 

If a Vehicle meets all GoalRequirements for a 
specific Goal, then that vehicle has the 
capability for that Goal 

 

F = Feature Rules 
F1 VehicleFeature ⊑ 

∃canFulfill.GoalRequirement ⊓ ≥0.canFulfill 
A VehicleFeature can only fulfill 
GoalRequirements and may be able to fulfill 0 
or more GoalRequirements 

F2 VehicleFeature ⊑  
∃can_test.Constraint ⊓ ≥0.can_test 

A VehicleFeature can only test Constraints and 
may be able to test 0 or more Constraints 

C = Constraint Rules 
C1 Constraint ⊑ ∃appliesTo.(Mission ⊔ Goal) A Constraint can apply to a Mission or a Goal 

(and nothing else) 
C2 Constraint ⊑ ≥1.appliesTo.Goal A Constraint must apply to at least one Goal 
C3 appliesTo ∘ includes ⊑ appliesTo A Constraint that applies to a Mission must also 

apply to all of the Goals that Mission includes 
EC  = End Condition Rules 
EC1 EndCondition ≡ {SUCCEED, FAIL, 

VIOLATE} 
Possible ending conditions are SUCCEED, 
FAIL, and VIOLATE (i.e., imminent Constraint 
violation) 
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G = Goal Rules 
G1 Goal ⊑  

∃requires.GoalRequirement ⊓ ≥0.requires 
A Goal can only require a GoalRequirement and 
may require 0 or more Goal Requirements 

G2 Goal ⊑ ∃hasEndCondition.EndCondition ⊓ 
≤1.hasEndCondition.End_Condition 

A Goal's ending state must be an EndCondition, 
and a Goal can end with at most one 
EndCondition 

G3 Goal ⊑ ∃isNext.Goal A Goal can only have other Goals next 
G4 hasEndCondition(G,SUCCEED) ⊔ 

hasEndCondition (G,FAIL) ⊔ 
hasEndCondition (G,VIOLATE) ⊑ 
isNext(G,G2) 

A Goal can only have an immediate successor 
based on the existence of an ending state for that 
Goal 

G5 Goal(G) ⊑  
≤1.(is_next(G,G2) ⊓ 
end_state(G,SUCCEED)) ⊔ 
≤1.(is_next(G,G2) ⊓ end_state(G,FAIL)) ⊔ 
≤1.(is_next(G,G2) ⊓ 
end_state(G,VIOLATE)) 

A Goal can have no more than one immediate 
successor in the event of a specific ending state 

G6 Goal ⊑ ∃follows.Goal A Goal can only be followed by another Goal 
G7 Goal(G) ⊑ ¬follows(G,G) A Goal cannot follow itself (no loops) 
G8 isNext ⊑ follows A Goal follows another Goal if it is the next 

Goal 
G9 follows ∘ follows ⊑ follows follows is transitive (if follows(A,B) and 

follows(B,C), then follows(A,C)) 
G10 includes ≡ startsWith ∘ follows All Goals in a Mission must potentially follow 

the starting Goal (satisfiability vice entailment) 

E. Mission Execution Ontology (MEO) Summary 

It is possible to produce general robot mission orders that are understandable by (legally culpable) humans and are reliably and 

safely executable by robots. The semantic representation of the mission plans permits automated examination of the plans for 

logical consistency and provides an enhanced methodology for software implementations to process missions. Even if perfectly 

executable, proper robot logic is not useful in military context unless it is a directly compatible extension of warfighter logic. 

ROEs, concepts of operation, doctrine, tactics, etc. must be expressible in equivalent terms to be effective and usable. Constraint 

tests must be determinable by a human supervisor or critic, by a virtual environment running a simulation, or by on-board robot 

sensors in the operating environment. Constraint test can match common guidelines such as rules of the road, water-space 

management, ROEs, operational orders, and other expressions of bounds on mission conduct. These expressions cannot be vague, 

must result in clear logical determinism (true or false), must be able to combine multiple logical constraints, and need to note 

reporting requirements when human permission is necessary. For strategic-level task controllers, the ternary tactical task sequencer 

using ethics constraints may allow traceability and accountability for the full set of executed robot tasks without loss of generality. 

ROEs and other expressions provide ethical constraints and boundary conditions on robot strategic planning and operational 

conduct that can work cooperatively and satisfactorily with humans. 
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VI. CONCLUSIONS  

Humans given authority over potentially lethal robotic systems must be provided with realistic capabilities that enable 

meaningful supervision, responsibility and accountability.  Autonomous Vehicle Command Language (AVCL) mission definitions 

provide one such example: the ability to define Strategic Level goals and Tactical Level tasks in a human-understandable way, and 

in syntactically validatable form, that a wide variety of robots might interpret and execute.  Mission Execution Automata (MEA) 

formalisms show that the underlying programming constructs are tractable and sufficiently general to ensure broad feasibility.  

Mission Execution Ontology (MEO) validation provides further abilities to logically evaluate the semantic correctness and 

completeness of ethically constrained mission definitions.  Together these capabilities provide a practical framework for ethically 

grounded human supervision of unmanned systems.   

Specific conclusions and recommendations include: 

• Ethical operation of autonomous systems requires human responsibility, accountability and understanding.  Any decision to 

deploy potentially lethal force without appropriate constraints or control may be dangerous, immoral and illegal. 

• Lethality requires an ethical and legal basis for unmanned system operations. Principles such as vicarious liability clearly 

show that humans are both responsible and also vulnerable.  Robot self-preservation becomes irrelevant when human life is 

at stake. 

• Unmanned systems can remain supervised and semi-autonomous, even if communications are lost, if appropriate guidance 

and checkpoints are provided. 

• Human clarity and cooperative action are essential for supervising robots together with human teams.  

• Unmanned systems can be compatibly tasked in concert with human teams. 

• Applied ethics equals defining tasks and observing constraints prior to executing potentially harmful tasks. 

• The mathematical concepts of description logics and ontologies, as implemented by Semantic Web technologies, is proposed 

to capture common logical and ethical relationships for mission and task definition.   

• A mission-definition approach to constrained tasking is actionable for all unmanned systems regardless of software 

architecture.  

• For those choosing to adopt RBM for robot control, we urge that the strategic level be fail-safe and exhaustively testable.  

• Ethical constraints on robot mission execution are possible today. There is no need to wait for notional future developments 

in Artificial Intelligence (AI). It is therefore a moral imperative that ethical constraints in some form be introduced into the 

software of all robots capable of inflicting unintended harm to humans or property. 

Ethical operation of robotic systems requires human accountability.  In both the legal and moral sense, this implies that human 

operators be in a position to understand, and therefore control, robot mission outcomes. This level of understanding can be 
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achieved through the satisfaction of three requirements:  operator understanding of high-level mission flow, mission descriptions 

understandable to both human operators and target vehicles, and mission descriptions consisting entirely of trusted behaviors and 

constraints. 

Algorithms cannot replace human responsibility.  Even so, a fully testable technology (such as that provided by the MEA and 

MEO formalisms) allows for the assignment of human accountability.  Specifically, the MEA provides a mathematically 

rigorous mechanism for mission definition and execution as an exhaustively testable flow diagram.  This approach ensures that 

accountable operators can fully understand all high-level task sequences before authorizing robot operations.  The MEO employs 

DLs and Semantic Web technologies to provide strong assurances that MEA mission definitions are semantically correct and 

fully executable by specific target vehicles. 

By applying the best strengths of human ethical responsibility, repeatable formal logic and directable unmanned systems 

together, these capabilities provide a practical framework for ethically grounded human supervision of unmanned systems.  

Much important work awaits. 
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