Skip to end of metadata
Go to start of metadata

THE ROLE OF EFFICIENT XML INTERCHANGE (EXI) IN NAVY WIDE-AREA NETWORK (WAN) OPTIMIZATION

Steven Debich, Lieutenant Commander, United States Navy

Thesis, Master of Science in Network Operations and Technology, March 2015

Advisor: Don Brutzman, Department of Information Sciences.  Co-Advisor: Scot Miller, Department of Information Sciences.  Second Reader: Don McGregor, MOVES Institute.

Abstract.  Navy afloat units become disadvantaged users, once disconnected from the pier, due in part to the high latency associated with SATCOM. Unfortunately recent gains in SATCOM capacity alone do not overcome throughput limitations that result from latency’s effect on connection-oriented protocols. To mitigate the effect of latency and other performance inhibiting factors, the Navy is improving its current WAN optimization capabilities by implementing Riverbed Steelhead WOCs. At-sea testing has shown Steelhead increases effective SATCOM capacity by 50%. Laboratory testing demonstrates that by encoding structured and semi-structured data as EXI rather than XML, compression ratios can be further improved, up to 19 times greater than Steelhead’s compression capability alone. Combining EXI with Steelhead will further improve the efficient use of existing SATCOM capacity and enable greater operational capabilities, when operating in a communications constrained environment. Not only does EXI improve compactness of traffic traveling over relatively high capacity SATCOM channels, it also expands net-centric capabilities to devices operating at the edge of the network that are restricted to lower capacity transmission methods. In order to achieve these substantial improvements the Navy must incorporate the already mandated DISR standard, EXI, as the single standard for all systems transferring structured and semi-structured data.

Received Outstanding Thesis Award from NPS Information Sciences Department.

Keywords: EXI, Efficient Xml Interchange, EFX, efficient XML, Riverbed, Steelhead, WAN optimization, compression, long fat network LFN.

Links: catalogslideset (.pdf), thesis.

  • No labels