MAKING BIG FILES SMALL
AND SMALL FILES TINY
● JavaScript Object Notation (JSON) is a common alternative to XML in web applications
● JSON is a plaintext data-interchange format based on JavaScript code
● JSON has compact binary encodings analogous to EXI:
 ○ CBOR
 ○ BSON
● Research Question: Is EXI more compact than CBOR and BSON?
EXI for Large XML Files

- W3C and previous NPS research measured EXI performance on XML up to 100MB
- Large data dumps can easily exceed that
- **Research Question:** How does EXI (but not CBOR/BSON) perform on files from 100MB - 4GB?
Use Case Focus

- Compression results across multiple use cases look different from results for multiple files within a single use case
- Select a few use cases and study them in-depth

Configuration Focus

- EXI has many configuration options that affect
 - Compactness
 - Processing speed
 - Memory footprint
 - Fidelity
- XML Schema affects EXI compression as well
When in doubt, try every possible combination of options
Small-file Use Cases (B to KB)

- OpenWeatherMap
- Global Position System XML (GPX)

- Automated Identification System (AIS)
EXI smaller than CBOR/BSON, aggregating data helps
Well-designed XML Schema improves performance
Large-file Use Cases (KB to GB)

- Digital Forensics XML (DFXML)
- OpenStreetMap
- Packet Description Markup Language (PDML)
EXI performs well on large files, aggregation benefits plateau
EXI and MS Office

- Microsoft Office is ubiquitous in Navy/DoD
- Since 2003, the file format has been a Zipped archive of many small XML files
- Since 2006, the file format has been an open standard
- Since 2013, MS Office 365 can save in compliant format
- Tools such as NXPowerLite target excess image resolution and metadata to shrink them
- EXI can target the remainder...
Conclusions

- When to send?
 - Aggregating data improves performance
 - Balance with operational requirements
- EXI configurations are significant
- XML Schema is significant
 - Previously a tool for data validation, now a tool for compression
- EXI is generally more compact than JSON-based binary encodings
- EXI performs well on large files

Tuning data, XML schema and EXI codec on a per-application basis maximizes benefits
Next Steps

● Holistic Profiling
 ○ Optimizing EXI encodings is a multi-dimensional problem

● Need for Best Practices
 ○ How to make sure we’re getting the best performance possible for EXI?
 ○ Rethinking XML and associated schemas a must

● Expanding EXI to the Open Web Platform
 ○ HTML5, CSS, JavaScript, JSON, SVG are the building blocks of tomorrow’s applications, distributed over networks
 ○ All are targets for EXI-like compression techniques

● Fleet Adoption
 ○ Open source EXI codec on every desktop and server