Resupplying Marine Corps units ashore from a seabase presents a unique challenge for amphibious planners. In particular, it is a laborious process to generate the schedules for the ship-to-shore assets that deliver supplies ashore. In this thesis, we focus specifically on the delivery of bulk fuel for a Marine Expeditionary Unit (MEU). We introduce the MEU Amphibious Connector Scheduler (MACS) tool to quickly provide amphibious planners with optimized and executable ship-to-shore delivery schedules of bulk fuel to multiple locations ashore. MACS consists of three main models. The first is a dynamic network flow model to compute the optimal number of runs (i.e., round-trips) for each delivery asset to meet the demand for fuel on shore as quickly as possible. The second model is an assignment heuristic that orders the runs for each delivery asset. This assignment heuristic allows us to bypass a slow mixed integer linear program. The final model is a linear program that takes the output from the first two models and creates a minute-by-minute schedule that minimizes the average completion time over the delivery assets. We analyze several different scenarios, and MACS generates schedules in less than one minute.